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Abstract

In the paper dynamics of a three-dimensional temperature field in the system of direct floor heater was investigated.

A step response (heating on curve) and local and global time constants of the device were determined. Then, a spatial–

temporal distribution of the field in the system controlled by the on–off regulator was found. The mathematical model

of heat propagation was a non-homogeneous and homogeneous equation of a three-dimensional diffusion with an

adequate set of boundary conditions. Four methods were applied for the solution of the above: superposition of states

(coupled with separation of variables), finite elements, criterion of an averaged time constant and superposition of step

characteristics. It was found that time profiles of the temperature depend very strongly on the position of an observing

point. All relations were processed numerically. The obtained results are presented in a graphic form. A physical in-

terpretation of the achieved solutions is included. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The paper is a continuation of the recent publications

of the authors [1–3]. In [1,2] a stationary component of

the temperature field in a direct floor heater was deter-

mined. In [3] dynamics of the two-dimensional temper-

ature field in a long heating duct was investigated. The

considerations given in [3] were referred to the heaters,

whose length is considerably larger than the cross-sec-

tional dimensions (i.e. in hallways, horticultural tunnels,

communication ducts, etc.). The above assumption is

not fulfilled in the compartments of a small and medium

size. Therefore it is necessary to extend the results of the

paper [3] to a three-dimensional case.

The system will be considered, whose simplified

scheme is presented in Fig. 1. As it is seen, the axes of

cable sections are passing through the points of co-or-

dinates ðxk ; yk ; zÞ, where xk ¼ 2aðk � 0:5Þ=K, yk ¼ y1 ¼

const:, z 2 hul; ð1� uÞli. More accurate description of
the heater and the assumed simplifications are given in

[2].

The aim of the present paper is the investigation of

dynamic properties of a three-dimensional system and

the analysis of transient (i.e. time-spatial) temperature

field distributions.

2. Step response of the system (heat-up curve)

For the following reasons the step response has a

special place [4,7] in the analysis of system dynamics:

(a) it is a convenient connection between the investiga-

tions of steady and transient states (e.g. between

[1,2] and [3] and the present paper),

(b) it enables direct (e.g. Section 3.4) or indirect (e.g. by

means of Duhammel’s theorem [14]) determination

of the response on an arbitrary excitation,

(c) it is a basis for determination of the averaging time

constant [5,6] of the objects with distributed param-

eters and their transmittances.

In the analysed case the step characteristic is the system

thermal response Hðx; y; z; tÞ for the switching on of the
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power supply at the zero time instant ðt ¼ 0Þ. For t > 0
the process of a heat diffusion modelled by a non-ho-

mogeneous parabolic equation [8,9,14] will proceed

o2Hðx; y; z; tÞ
ox2

þ o2Hðx; y; z; tÞ
oy2

þ o2Hðx; y; z; tÞ
oz2

� 1
v
oHðx; y; z; tÞ

ot
¼ � 1

k
gðx; y; zÞ ð1Þ

for 06 x6 2a, 06 y6 2b, 06 z6 l.
Boundary conditions of the system were precisely

described in [1,2]. It was assumed that the heater does not

exchange energy through the thermally insulated walls

oH x; y; z; tð Þ
ox

����
x¼0

¼ 0; ð2aÞ

oHðx; y; z; tÞ
ox

����
x¼2a

¼ 0; ð2bÞ

oHðx; y; z; tÞ
oy

����
y¼0

¼ 0; ð2cÞ

oHðx; y; z; tÞ
oz

����
z¼0

¼ 0; ð2dÞ

oHðx; y; z; tÞ
oz

����
z¼l

¼ 0; ð2eÞ

Nomenclature

A dimensionless constant, determined by

(4c)

ð2a; 2b; lÞ dimensions of a floor panel (Fig. 1)

ð2a	; 2b; lÞ dimensions of repeatable segment

(Fig. 2)

½C� heat capacity matrix

c specific heat of concrete

Gð� � �Þ transmittance of the first-order element

gðx; y; z; tÞ volumetric power density of spatial heat

sources (at a stationary case gðx; y; zÞ)
fgg vector of heat sources

Hðx; y; z; tÞ temperature step response of the system

(heating on curve)

Htðx; y; z; tÞ transient component of a temperature

step response of the system

Hsðx; y; zÞ steady component of the temperature

step response of the system

f _HHg vector of the step response derivative at

nodes

K number of cable sections

k index of the kth cable section

ðk ¼ 1; 2; 3; . . . ;KÞ
qk linear power density of the kth cable

sector

R cable radius

r radius of the cable resistive core

s Laplace’s transformation variable,

T ðx; y; z; tÞ entire temperature field in the floor

panel

T1ðx; y; z; t0Þ temperature field of the floor panel at

the second stage of operation of the

regulated system (first self-cooling)

T2ðx; y; z; t00Þ temperature field of the floor panel at
the third stage of operation of the

regulated system (repeated heating on)

T2tðx; y; z; t00Þ transient component of the temperature
at the third stage of operation of the

regulated system (repeated heating on)

TH the temperature of power switching off

TL the temperature of power switching on

T0 ambient temperature

fTg nodal temperature vector

t time

t0; t00 changed time axes at the second ð 0Þ or
third ð 00Þ stage of operation of the
regulated system

t1 the time of first heating of the floor

(start-up)

t2 the time of first self-cooling of the

floor

t3 the time of second heating of the floor

u dimensionless coefficient of filling of

the length l by the cable (Fig. 1(b),

u 2 h0; 1i)
ðx; y; zÞ coordinates of a point in the floor panel

ðx	; y	; z	Þ coordinates of the regulator sensor

location within the floor panel

ðxk ; yk ; zÞ coordinates of the position of the kth

section of the cable core

y1 plane of the cable layout

a averaging coefficient of heat transfer to

air (sum of the radiation and convection

coefficients)

cn consecutive positive roots of the

transcendental Eq. (4c)

d density of concrete

dm0; dð2iÞ0 Kronecker’s symbols

e index of the series convergence

k average heat conductivity of concrete

½k� generalised heat conductance matrix

m1ðx; y; z; t0Þ increase (15) of the temperature at the

second stage of operation of the

regulated system

mðkÞmniðx; y; zÞ series term (4a)

sðx; y; zÞ local time constant

sg global time constant

v diffusivity (¼ k=ðcdÞ)
1ð� � �Þ unit step function
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and that the heat is emitting throughout the upper sur-

face y ¼ 2b in accordance with Newton’s law
oHðx; y; z; tÞ

oy

����
y¼2b

¼ � a
k
½Hðx; y ¼ 2b; z; tÞ � T0�: ð2fÞ

At the moment t ¼ 0 the system remains in a steady state
and all its points have the temperature T0:

Hðx; y; z; t ¼ 0Þ ¼ T0: ð2gÞ

In the present paper, the step characteristic was de-

termined by means of three methods: (a) superposition

of states, (b) averaging time constant, (c) finite element

method. After a presentation of the consecutive solu-

tions, computational examples will be presented in the

continuation of the section.

2.1. Method of the states superposition

In the method of the states superposition the solution

of the boundary problem (1), (2a)–(2g) is anticipated in

the form

Hðx; y; z; tÞ ¼ Hsðx; y; zÞ þ Htðx; y; z; tÞ; ð3Þ

where

lim
t!1

Hðx; y; z; tÞ ¼ Hsðx; y; zÞ; lim
t!1

Htðx; y; z; tÞ ¼ 0:

If the cable will be substituted by the sections of its axis

with the length of lð1� 2uÞ each, then the steady com-
ponent is expressed as below [2, formulas (8) and (11)]

Hsðx; y; zÞ ¼ T0 þ
XK
k¼1

X1
m¼0

X1
n¼1

X1
i¼0

mðkÞmniðx; y; zÞ; ð4aÞ

where

mðkÞmniðx;y;zÞ¼
2qk
abpk

ð�1Þicos mp xk
2a

� �
cos cn

yk
2b

� �
sin ipð1�2uÞ½ �

ið1þdm0Þð1þdð2iÞ0Þ 1þ sinð2cnÞ
2cn

h i

�
cos mp x

2a

� �
cos cn

y
2b

� �
cos 2ipz

l

� �
mp
2a

� �2þ cn
2b

� �2þ 2ip
l

� �2h i ; ð4bÞ

ctgcn ¼
cn
A
; A ¼ 2ab

k
: ð4cÞ

From formulas (4a)–(4c) it follows that in the present

section it is enough to determine a transient component

only. Taking advantage of (1), (2a)–(2g) and (3), the

boundary problem with respect to Htðx; y; z; tÞ was for-
mulated:

o2Htðx; y; z; tÞ
ox2

þ o2Htðx; y; z; tÞ
oy2

þ o2Htðx; y; z; tÞ
oz2

� 1
v
oHtðx; y; z; tÞ

ot
¼ 0 ð5Þ

for 06 x6 2a, 06 y6 2b, 06 z6 l, t > 0,

oHt x; y; z; tð Þ
ox

����
x¼0

¼ 0; ð6aÞ

oHt x; y; z; tð Þ
ox

����
x¼2a

¼ 0; ð6bÞ

oHt x; y; z; tð Þ
oy

����
y¼0

¼ 0; ð6cÞ

oHt x; y; z; tð Þ
oz

����
z¼0

¼ 0; ð6dÞ

oHt x; y; z; tð Þ
oz

����
z¼l

¼ 0; ð6eÞ

oHt x; y; z; tð Þ
oy

����
y¼2b

¼ � a
k
Ht x; yð ¼ 2b; z; tÞ; ð6fÞ

Ht x; y; z; tð ¼ 0Þ ¼ �
XK
k¼1

X1
m¼0

X1
n¼1

X1
i¼0

m kð Þ
mni x; y; zð Þ: ð6gÞ

The variables in Eq. (5) were separated [8]. The ei-

genfunctions are sinuses and cosinuses (with respect to

spatial variables) and an exponential function (with re-

spect to time). The sinuses were discarded on the basis of

(6a), (6c) and (6d). The problem eigenvalues were

(a) (b)

Fig. 1. Electric floor heater: (a) simplified scheme; (b) cross-section at height of the cable.
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determined from the boundary conditions (6b), (6e) and

(6f). Consequently, the coefficient of appropriate series

follows from the initial condition (6g). This way the

solution Htðx; y; z; tÞ was obtained. The investigated step
characteristic (heat-up curve) was determined connect-

ing Htðx; y; z; tÞ with formulas (3) and (4a)–(4c):

Hðx; y; z; tÞ ¼ T0 þ
XK
k¼1

X1
m¼0

X1
n¼1

X1
i¼0

mðkÞmniðx; y; zÞ

� 1

�
� exp

�
� t

smni

	

; ð7aÞ

where

smni ¼
mp
2a

� �2"(
þ cn

2b

� �2
þ 2ip

l

� 	2#
v

)�1

; ð7bÞ

mðkÞmniðx; y; zÞ is given in (4b).
In the above analytical model the heat sources were

assumed to be linear (W/m) [2, Sections 2.1 and 3.1]. For

this reason, the field source points are singular (at the co-

ordinates xk ; yk ¼ y1; z 2 hul; ð1� uÞli). Hence tabulat-
ing (7a) requires an introduction of some deviation of the

abscissa x ¼ xk . It was assumed that in the nearest sur-
roundings of a source, the deviation is equal to the cable

radius R [2, Fig. 2]. In the rest of the area the deviation

can be less and it is equal to the radius r of the cable

resistive core (usually r ¼ R=6). Besides, a convergence
control of (7a) is necessary by the use of an index e.
Namely, the summation of (7a) can be interrupted, when

the quotient of the modulus of the sum of the last 10

terms by the modulus of the total sum is less than e. The
above remarks have an important significance for the

numerical tabulation of the characteristic (7a).

2.2. Approximation of the dynamics by the first-order

element

Characteristic (7a) is a quadruple sum (infinite with

respect to indices m; n; i and finite with respect to k). An

estimation of the transient duration by the use of (7a) is

therefore very difficult. Such an estimation is enabled by

the well-known criterion of the averaging time constant

(cf. [5, Section 3] and [6, formula (11)]):

sðx; y; zÞ ¼
Z 1

0

Hðx; y; z; tÞ � Hsðx; y; zÞ
Hðx; y; z; t ¼ 0Þ � Hsðx; y; zÞ

dt: ð8aÞ

Introducing (2g), (4a) and (7a) into (8a) a local time

constant was obtained (i.e. at the point ðx; y; zÞ)

sðx; y; zÞ ¼
PK

k¼1
P1

m¼0
P1

n¼1
P1

i¼0 mðkÞmniðx; y; zÞsmniPK
k¼1

P1
m¼0

P1
n¼1

P1
i¼0 mðkÞmniðx; y; zÞ

:

ð8bÞ

Relation (8b) is easy for the computerised tabulation

(after utilising formulas (4b) and (7b)). The averaging

time constant of the whole system (i.e. global) was de-

termined averaging the local constant at N points

sg ¼
1

N

XN
r¼1

sðxr; yr; zrÞ: ð8cÞ

The time of the thermal disturbance persistence can be

estimated as equal to 4sg. The introduction of sðx; y; zÞ
also simplifies formula (7a) (the expression in square

brackets can be shifted before the symbol of a sum)

Hðx; y; z; tÞ ¼ T0 þ 1

�
� exp

�
� t

sðx; y; zÞ


�

�
XK
k¼1

X1
m¼0

X1
n¼1

X1
i¼0

m kð Þ
mniðx; y; zÞ: ð9aÞ

Replacing sðx; y; zÞ in the above relation by sg:

sðx; y; zÞ ! sg; ð9bÞ

a less accurate approximation of the characteristic (7a)

was obtained. From formulas (9a) and (9b) it follows

that the system dynamics at the given point of the region

was approximated by the first-order element. Its trans-

mittances are

Gðx; y; z; sÞ ¼ 1

1þ ssðx; y; zÞ or GðsÞ ¼ 1

1þ ssg
:

2.3. Finite element method

The boundary problem (1), (2a)–(2g) was solved

among other things by means of the finite element

method [10,11] using the professional program NISA II/

Heat Transfer of the American firm EMRC [12]. The

heat sources were approximated by regular octagonal

prisms [2, Fig. 3(b)] inscribed into the cable core cylinder

of the radius r [2, Fig. 2(b)]. The mentioned prisms were

formed from even-armed wedge elements, whose ver-

texes are located on the cable axis. In these conditions

the function which appeared on the right-hand side of

(1) will take the following form:

gðx; y; zÞ ¼
g0 ¼ const: at interior octagonal

prisms ½2; Fig: 3ðbÞ�;
0 at the rest of area:

8<
:

ð10Þ

The power of such a virtual source has to be the same as

the power of the real cable and its stationary analytical

model [2]. On this basis the volumetric heat efficiency g0
is determined in formula (10). The rest of a source-free

region was partitioned on quadrangular prisms. This

way a mesh was developed, whose fragment is shown in

[2, Fig. 3(a)]. After finding the proper figure in [2] it is

seen that the mesh was refined at the surroundings of

field sources (for the sake of the large temperature gra-

dient in the cable surroundings).
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In the program NISA II the Galerkin procedure was

applied [12,13]. It discretises problem (1), (2a)–(2e), (2g)

with respect to the spatial variables. In the consequence,

problem (1), (2a)–(2g) was reduced to the system of the

first-order differential equations with respect to time:

½C�f _HHg þ ½k�fHg ¼ fgg: ð11Þ

It should be pointed out that ½k� and fgg contain the
components derived from the convectional boundary

condition (2f).

In the program NISA II four methods of a differen-

tial discretisation of system (11) with respect to time are

accessible [12]. Because of the solution stability and

weak limitation of the time step the method of backward

difference quotient was chosen [11]. In the consequence

of that (at each time step) the system of algebraic

equations was obtained with respect to the temperature

at all nodes. For a solution of the mentioned system the

Newton–Raphson method was used [18]. This way the

investigated vector fHg was determined, which accom-
plished the procedure.

2.4. Examples of the heat-up curve computations and

discussion of the results

Relations (7a), (7b) and (9a), (9b) and vector fHg
(Section 2.3) are the searched step responses (heat-up

curves) of the system investigated. Because the cable is

laid symmetrically, the characteristics can be presented

in the so-called repeatable segment [2, Chapter 4.1]. It is

a constrained computational area shown in Fig. 2.

Hence in all the relations K ¼ 1 and a ¼ a	 should be
introduced.

The following set of data was assumed:

k ¼ 1 W=ðm KÞ; c ¼ 840 J=ðkg KÞ;

d ¼ 2000 kg=m3; a ¼ 12 W=ðm2 KÞ;

qk ¼ 15 W=m; g0 ¼ 2:1213� 107 W=m3;

T0 ¼ 20�C; 2a	 ¼ 0:12 m;
2b ¼ 0:06 m; xk ¼ x1 ¼ 0:06 m;
yk ¼ y1 ¼ 0:015 m; l ¼ 2:5 m;

u ¼ 0:1; r ¼ 5� 10�4 m;

R ¼ 3� 10�3 m; e ¼ 10�7:

Computations were performed on the computer

Pentium II 233 MHz. The repeatable segment was par-

titioned on 6000 finite elements with a total number of

7171 nodes [2, Fig. 3(a)].

A convergence of the series (7a), (7b) and (9a), (9b)

was controlled by the method given above (the end of

Section 2.1). The summation of the series (7a), (7b) re-

quired the largest number of terms at the point of the

least deviation from the singular plane (x ¼ 0:06� 5�

10�4 m, y ¼ 0:06 m, z ¼ 0:25 m). The following infor-
mation refers to that extreme location. The steady and

transient components of the distribution (7a), (7b) were

computed separately.

The steady component is described by the expression

(4a) contained in (7a) and (9a) and at the denominator

of (8b). In (4a)–(4c), an indeterminate term for i ¼ 0 was
separated, whose value was determined by means of the

asymptotic limit i ! 0. After subsequent transforma-

tions of (4a)–(4c) the series with index m were summated

analytically according to [1, formula (9)]. In this manner

the relations [2, formulas (10)] were obtained in which

one less series appeared. It limited the maximal number

of terms in [2, formula (10b)] up to 322 and up to

322� 5022 in [2, formula (10c)].
In the transient component of (7a) the exponential

function appeared. So the relation [1, formula (9)] has

not found an application. For this reason the transient

component remained as the triple series ðK ¼ 1Þ. It is
slowly convergent for the small values of time (for t ¼ 0
309� 1564� 4756 terms were summated). The conver-
gence increases with time (e.g. for t ¼ 10800 s the
number of considered terms was reduced to 11�
11� 11, which is a minimum following from the as-

sumed convergence criterion).

The maximal number of terms in the numerator of

relation (8b) did not exceed 33� 604� 4486. This is a
relatively good convergence following from formula

Fig. 2. Repeatable segment of the heater (cross-section at

height of the heating cable).
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(7b). The global time constant (8c) was determined av-

eraging 99 local constants.

The results of computations are presented in Figs. 3–

5. Fig. 3 illustrates the local time constant distribution.

Because 4sðx; y ¼ 0:015 m; zÞ < 4sðx; y ¼ 0:06 m; zÞ, the
time of the transient persistence is shorter in the cable

horizontal plane than on the floor surface. The tem-

perature increases more slowly in the peripheral region

comparing to the central zone with the cable

ð4sðx; y; z ¼ 1:25 mÞ < 4sðx; y; z ¼ 0 mÞÞ, because the

heat diffusion is faster in the surroundings of energy

sources than at more distant points. This fact is also il-

lustrated in Figs. 4 and 5 by the lines without additional

marks, obtained by means of the models with distrib-

uted parameters (analytical and numerical version). A

fast increase of temperature on the cable surface is ob-

served in Fig. 5(a), whereas a delay of the characteristic

is evident in Figs. 4 and 5(b) (it concerns the start of the

transient). Therefore the presented results have a good

physical interpretation.

Comparing the methods of the step characteristic

determination the following remarks resulted:

(a) Approximation by the global time constant is the

least accurate (Figs. 4 and 5). It is clearly evident

in the cable surroundings (Fig. 5(a)), where an initial

speed of the heat penetration is significantly greater.

(b) Approximation by the local time constant is the least

accurate at the beginning of the transient (Figs. 4 and

5(a)). The first-order element cannot precisely model

typical field effects (apparent dead time or intensive

diffusion). The smallest error of an approximation

by the local time constant occurred in the middle

part of the segment surface (Fig. 5(b)).

(c) The difference between the numerical and analytical

solution is the largest in the direct surroundings of

the cable (Fig. 5(a)). It follows from the assumed dif-

ferent models of the cable core: linear (Section 2.1)

and volumetric (Section 2.3) heat source.

From Fig. 5(b) it follows that during the steady state

the temperature of the floor surface in the region over

the heat source will exceed 30 �C. On the other hand it is
known that heating comfort is perceptible at the tem-

perature around 26 �C (Polish standards PN-85/N-

08013). Therefore the step response cannot be a normal

procedure of work of the floor. It serves only for a de-

termination of the system dynamic properties. By this

reason the system controlled by a regulator will be

analysed in the following section of the paper.

3. Operation with a regulator

From the preceding section it follows that the heating

comfort of a compartment can be ensured by appro-

priate regulation of the heater. In the complex systems

Fig. 4. Step response of the system (heat-up curve) for x ¼ 0:12 m, z ¼ 0 m: (a) at height of the heating cable y ¼ 0:015 m; (b) on the
floor surface y ¼ 0:06 m.

Fig. 3. Distribution of the local time constant in the selected

cross-sections and global time constant (sg ¼ 13502:86 s).
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of automatic control there are considered [15,16]: (a)

temperature of the floor surface, (b) temperature of air

inside and outdoors, (c) individual program of user’s

needs. In the present paper only the first factor listed

above was considered for the regulation [15]. It was

assumed that the temperature measuring sensor is in-

stalled at the point of co-ordinates ðx	; y	; z	Þ. By means
of the on–off regulator the temperature of this point is

stabilised around a set value. When it exceeds a half of

the regulator hysteresis the heater will be switched off.

But if the temperature at ðx	; y	; z	Þ declines by half of
the hysteresis below the set value, the power supply will

be reconnected. The aim of the present section is then

determination of the transient temperature field of a

three-dimensional system with alternative switching on

and off of the device.

The operation of a direct heater is controlled in the

above manner [15]. It should be pointed out that in

this case moments of the heater switching on and off

are not known in advance (except first switching at

t ¼ 0). It is important difference comparing with the
supply manner of an accumulative heater [17]. In [17]

the time of the system operation was given in advance.

It followed from lower rates of the electric energy at

strictly determined intervals of a 24 h period (from the

so-called night tariff). Besides, a two-dimensional sys-

tem was investigated in [17] by means of elementary

balances. In the present section four other methods of

the field analysis in a three-dimensional system were

used.

3.1. Analytical method

Before the first switching off of the power supply at

the moment t ¼ t1 (i.e. during start-up of heating) the
temperature distribution T ðx; y; z; tÞ is a step character-
istic

T ðx; y; z; tÞ ¼ Hðx; y; z; tÞ for 06 t6 t1; ð12Þ

where Hðx; y; z; tÞ is determined by formula (7a). The
moment t1 is determined from the condition

T ðx ¼ x	; y ¼ y	; z ¼ z	; t ¼ t1Þ ¼ Hðx	; y	; z	; t1Þ ¼ TH :

ð13Þ

Because function (12) is monotonic with respect to t,

then in order to determine t1 a time step in the sur-
roundings of TH should be reduced during the tabulation
of (12).

At the moment t ¼ t1 a new time axis t0 ¼ 0 was in-
troduced. For 06 t0 6 t2 the heat sources do not operate
and the equation of a conductivity becomes homoge-

neous (5). Instead of considering the referred for this

case distribution T1ðx; y; z; t0Þ with the initial condition
T1ðx; y; z; t0 ¼ 0Þ ¼ Hðx; y; z; t ¼ t1Þ; ð14Þ

it is more convenient to introduce an increase

m1ðx; y; z; t0Þ ¼ T1ðx; y; z; t0Þ � T0: ð15Þ

Then it is sufficient to exchange relations (5), (6a)–(6f)

Htðx; y; z; tÞ ! m1ðx; y; z; t0Þ; ð16aÞ

t ! t0; ð16bÞ

where ‘‘a ! b’’ denotes ‘‘to change a by b’’. On the basis
of (15), (14) and (7a) the boundary problem (16a), (16b)

was supplemented with an initial condition

m1ðx; y; z; t0 ¼ 0Þ ¼
XK
k¼1

X1
m¼0

X1
n¼1

X1
i¼0

mðkÞmniðx; y; zÞ

� 1

�
� exp

�
� t1

smni

	

; ð16cÞ

where mðkÞmniðx; y; zÞ and smni determine relations (4b), (7b),
respectively. The method of the solution of the

Fig. 5. Step response of the system (heat-up curve) for x ¼ 0:06 m, z ¼ 1:25 m: (a) at height of the heating cable y ¼ 0:015 m; (b) on the
floor surface y ¼ 0:06 m.
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boundary-initial problem (16a)–(16c) was outlined di-

rectly after formula (6g). The increase obtained from

that was substituted into (15), and afterwards the old

time axis t0 ¼ t � t1 was restored. It leads to the required
temperature distribution at the second stage of the sys-

tem operation for t16 t6 t1 þ t2:

T ðx; y; z; tÞ ¼ T1ðx; y; z; t � t1Þ

¼ T0 þ
XK
k¼1

X1
m¼0

X1
n¼1

X1
i¼0

mðkÞmni x; y; zð Þ

� 1� exp � t1
smni

� 	� 	
exp � t � t1

smni

� 	� 

:

ð17Þ

The moment t2 was determined from the condition

T ðx ¼ x	; y ¼ y	; z ¼ z	; t ¼ t1 þ t2Þ
¼ T1ðx	; y	; z	; t2Þ ¼ TL; ð18Þ

where the monotony of T1ðx; y; z; t0Þ with respect to t0 was
utilised.

The regulator switches on the power supply again at

the moment t ¼ t1 þ t2. A next time axis was then in-
troduced ðt00 ¼ 0Þ. For 06 t00 6 t3 the following substi-
tutions were done in (1) and (2a)–(2f):

Hðx; y; z; tÞ ! T2ðx; y; z; t00Þ; ð19aÞ

t ! t00: ð19bÞ

This time the initial condition is non-homogeneous

T2ðx; y; z; t00 ¼ 0Þ ¼ T1ðx; y; z; t0 ¼ t2Þ; ð19cÞ

where T1ðx; y; z; t0 ¼ t � t1Þ follows from (17). The

boundary-initial problem (19a)–(19c) was solved by

means of the method of the states superposition (Section

2.1). The steady-state component T2sðx; y; zÞ was deter-
mined from (4a):

T2sðx; y; zÞ ¼ Hsðx; y; zÞ: ð20Þ

A differential equation and boundary conditions for the

transient component T2tðx; y; z; t00Þ were obtained after
introducing the following exchange in (5) and (6a)–(6f):

Htðx; y; z; tÞ ! T2tðx; y; z; t00Þ; ð21aÞ

t ! t00: ð21bÞ

The initial value of the transient component was deter-

mined on the basis of (19c), (17) and (20):

T2tðx; y; z; t00 ¼ 0Þ
¼ T2ðx; y; z; t00 ¼ 0Þ � T2sðx; y; zÞ

¼
XK
k¼1

X1
m¼0

X1
n¼1

X1
i¼0

mðkÞmniðx; y; zÞ 1

�
� exp

�
� t1

smni

!!"

�exp
�
� t2

smni

	
� 1



: ð21cÞ

Solving problem (21a)–(21c) by the known method, su-

perpositioning the result from (20) and returning to the

old time axis t00 ¼ t � t1 � t2 it was finally obtained for
t1 þ t26 t6 t1 þ t2 þ t3:

T ðx; y; z; tÞ ¼ T2ðx; y; z; t� t1 � t2Þ

¼ T0 þ
XK
k¼1

X1
m¼0

X1
n¼1

X1
i¼0

mðkÞmniðx; y; zÞ

� 1� exp � t1
smni

� 	� 	
exp � t2

smni

� 	
� 1

� 
�

� exp � t � t1 � t2
smni

� 	
þ 1

�

ð22Þ

The moment t3 was determined analogously to (13), (18):

T ðx ¼ x	; y ¼ y	; z ¼ z	; t ¼ t1 þ t2 þ t3Þ
¼ T2ðx	; y	; z	; t3Þ ¼ TH : ð23Þ

It follows from (13) and (23) that after the moment

t2 þ t3 the temperature of the sensor will return to the
value of TH . Hence the time-spatial distributions of
the temperature were determined for a full cycle of the

system power supply. The remarks with respect to

the source points singularity given after formula (7b)

were considered during numerical tabulation of relations

(12), (17) and (22).

3.2. Numerical method

In the present section the time axis remains un-

changed. Consequently, consecutive switching on and

off of the power supply should be modelled by a heat

source of the efficiency depending on time. For this

reason in formulas (1) and (2a)–(2g) it was changed

Hðx; y; z; tÞ ! T ðx; y; z; tÞ; ð24Þ

gðx; y; zÞ ! gðx; y; z; tÞ: ð25Þ

The program NISA II/Heat Transfer (the same as for

the step characteristic) was applied for solving (24) and

(25). The system partition on finite elements, the method

of discretisation and solution of (24) and (25) were given

in Section 2.3. Moreover, the program contains a stan-

dard heat source function [12]. It enables a piecewise

linear approximation of the time profile of the power

efficiency. In the analysed case, rectangular signals rep-

resent the efficiency change (on–off type). But two dif-

ferent values of the power cannot be chosen for the same

moment t. For this reason trapezium shaped signals of

steep slopes were assumed. A rise and decay time of

these impulses are very small (3 s) comparing with the

time constant (sg ¼ 13502:86 s). Introduced error has no
significance and trapeziums will be treated in the fol-

lowing considerations as rectangulars.
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Determination of the transient temperature field re-

quires three stages of computations, always starting at

the moment t ¼ 0. In the consecutive steps the source
was defined as follows:

gðx; y; z; tÞ ¼ gðx; y; zÞ

1ðtÞ for 06 t6 t1;
½1ðtÞ � 1ðt � t1Þ� for 06 t6 t1 þ t2;
½1ðtÞ � 1ðt � t1Þ
þ1ðt � t1 � t2Þ� for 06 t6 t1 þ t2 þ t3;

8>><
>>:

ð26Þ

and the system thermal response T ðx; y; z; tÞ was deter-
mined numerically in the adequate time interval. At the

same time the moments t1; t2; t3 were determined from
the conditions (13), (18), (23) adequately reducing the

time step in the surroundings of TH or TL. This way the
program automatically changed the non-homogeneous

equation of a diffusion (24), (25) onto homogeneous

(and vice versa) at the moments of the cable power

supply changes. Afterwards the program determined the

initial conditions for the next stage of computations.

The computation of T ðx; y; z; tÞ for 06 t6 t1 þ t2 þ t3
terminates the procedure within the range of a full cycle

of the power supply.

3.3. Criterion of averaging time constant

Relations (12), (17) and (22) are rather complex.

They contain infinite number of components, in which

each of them vanishes with different time constants smni.
The mentioned formulas can be substituted by more

simple expressions. For that purpose the criterion of

averaging time constant is applied (Section 2.2). Ac-

cording to that, it should be substituted in (12), (17), (22)

smni ! sðx; y; zÞ; ð27aÞ

where sðx; y; zÞ was determined by (8a) and (8b). In the
consequence of the substitution of (27a), the expression

in cubic brackets (concern (22)) or in square brackets

(concern (17) and (7a)) will move before the symbol of a

quadruple sum. A subsequent simplification was ob-

tained after the substitution

sðx; y; zÞ ! sg; ð27bÞ

where sg is determined by (8c). In the discussed method
the moments of the power supply switch-over are also

determined from (13), (18) and (23).

Substitutions (27a) and (27b) change the system dis-

tributed parameters on concentrated ones at a given

point of space. This is a reason for the errors introduced

by the method discussed.

3.4. Superposition of step characteristics (heat-up curves)

Applying one of the above direct methods (Sections

3.1–3.3) the moment of first ðt1Þ and second ðt1 þ t2 þ t3Þ
switching off and repeated switching on ðt1 þ t2Þ can be

computed on the basis of (13), (18) and (23). The re-

quired solution follows from the system linearity [1,2]

and the bottom line of formula (26):

T ðx; y; z; tÞ ¼ Hðx; y; z; tÞ1ðtÞ � Hðx; y; z; t � t1Þ1ðt � t1Þ
þ Hðx; y; z; t � t1 � t2Þ1ðt � t1 � t2Þ

for 06 t6 t1 þ t2 þ t3: ð28Þ

Formula (28) is a superposition of the heater step

characteristics (Section 2). After prior determination of

t1; t2; t3; relation (28) is very useful for the analysis of the
system operation.

3.5. Examples of computations of the working cycle and

discussion of the results

The relations and procedures presented in Sections

3.1–3.4 allow us to determine the time-spatial distribu-

tion of the system temperature. Computations were

performed for a repeatable segment (Fig. 2). For the

simulation a set of data was assumed from Section 2.4,

which was supplemented as follows: TL ¼ 25:5�C, TH ¼
26:5�C, x	 ¼ 0:9 m, y	 ¼ 0:06 m, z	 ¼ 0:5 m. Therefore
a location of the sensor of the regulator was chosen on

the beginning of a ‘‘warm zone’’ of the heater surface [2,

Fig. 5, where considering symmetry the co-ordinate

z	 ¼ 0:5 m refers to z ¼ 2:0 m]. In consequence of
that, the temperature of the warmest points will be close

to the set temperature. Successively, x	 ¼ 0:09 m ensures
the same distance of the sensor from the warmest and

coldest cross-sections of the investigated segment. Hence

the sensor will be placed in the middle between the cable

x ¼ x1 ¼ 0:06 m and the maximal distance from it

x ¼ 2a	 ¼ 0:12 m. Similar like in Section 2.4 the com-
putations were realised by means of the computer Pen-

tium II 233 MHz.

A convergence of the series (12), (17) and (22) was

controlled in a manner described at the end of Section

2.1. The location of the point of the worst convergence

and the number of considered terms of the series (12)

were given in Section 2.4. In order to achieve a required

convergence in (17) and in the transient component from

formula (22), 325� 1564� 4756 and 333� 1564� 4756
terms were summated, respectively, at the initial mo-

ment of the proper time interval (i.e. at t ¼ t1 for (17)
and at t ¼ t1 þ t2 for (22)). In both cases the number of
considered terms rapidly declined with the time increase

(up to 11� 11� 11).
The results of direct computations (Sections 3.1–3.3)

are presented in Fig. 6. The analytical and numerical

methods enabled precise determination of the moments

of the system switch-over. From the analytical method it

was obtained that t1 ¼ 11120 s, t2 ¼ 2911 s, t3 ¼ 4081 s
and the time of the cycle persistence t2 þ t3 ¼ 6992 s
(therefore the interval of the power supply switching off
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occupies about 41.63% of the whole cycle). From the

method of finite elements it follows that t1 ¼ 11120 s,
t2 ¼ 2935 s, t3 ¼ 4105 s, t2 þ t3 ¼ 7040 s (and respec-
tively about 41.69%). Because the global time constant is

sg ¼ 13502:86 s (Fig. 3) the noticed differences have no
significance.

The shape of the curves in Fig. 6 shows also the ef-

fects of a thermal inertia. Despite the power switch-over

the system preserves a direction of the temperature

changes at the moments t1 and t1 þ t2. However the
system inertia is larger at the consecutive switching on

ðt ¼ t1 þ t2Þ than during switching off ðt ¼ t1Þ; because it
is more difficult to force consecutive heating of concrete,

than to allow for its free cooling off.

The estimation of usefulness of the averaging time

constant during the start-up (for 06 t6 t1) was given in
Section 2.4. As it is seen in Fig. 6, the accuracy of this

method is considerably lower at the interval

t16 t6 t1 þ t2 þ t3. It results from summation of the er-
rors of an approximation during the system switch-over;

because each point of the heater is substituted by a

concentrated element of the first order, which does not

model the inertia processes. In the consequence of the

above, the results obtained by the method of averaging

time constant are not presented in the next examples.

However it is useful for a determination of the per-

centage share of the switching off period in the total

cycle (ca. 40.89%). Hence, the method enables a correct

estimation of the costs of the electrical energy con-

sumption.

The intervals in which the successive switching off ðt02Þ
and on ðt03Þ of the system take place follow from the

conditions (29a), (29b):

T ðx	; y	; z	; t1 þ t2 þ t3 þ t02Þ ¼ TL; ð29aÞ

T ðx	; y	; z	; t1 þ t2 þ t3 þ t02 þ t03Þ ¼ TH : ð29bÞ

On this basis it was determined by means of the nu-

merical method (Section 3.2) that t02 ¼ t2 � 22s,

t03 ¼ t3 þ 11s, where t2 ¼ 2935 s, t3 ¼ 4105 s. Because
quantities of two orders less usually are neglected it was

assumed that t02 ¼ t2, t03 ¼ t3. Such a simplification can be
additionally justified as follows:

(a) A partial compensation of the differences with dif-

ferent signs ð�22 s;þ11 sÞ occurs within the supply
cycle t2 þ t3 ¼ 7040 s.

(b) The value of the differences is very small comparing

with the system global time constant sg ¼ 13503 s
(Fig. 3).

In these conditions the solution T ðx; y; z; tÞ for

06 t6 t1 þ 2t2 þ 2t3 was obtained adding the relation

�Hðx; y; z; t � t1 � t2 � t3Þ1ðt � t1 � t2 � t3Þ
þ Hðx; y; z; t � t1 � 2t2 � t3Þ1ðt � t1 � 2t2 � t3Þ; ð30Þ

to the right-hand side of (28). On this basis Figs. 7(a)–(c)

were prepared. As it is seen, within the investigated time

interval (about 7 h) three types of temperature profiles

appeared. The differences between them follow from a

dependence of the heat diffusion velocity on a distance

from the cable; because the inertia effects are diminished

approaching the heat source.

At the region most distant from the cable (for

z 2 h0; 0:2uli [ hð1� 0:2uÞl; li) the temperature is slowly
(but permanently) increasing (Fig. 7(a)). The thermal

inertia of this zone is so large that for 06 t6 t1 þ
2t2 þ 2t3 a lack of reaction occurs on switching off of the
system power supply (at the moment t ¼ t1 and

t ¼ t1 þ t2 þ t3). There are the following reasons for such
a situation:

(a) At the boundary region the apparent dead time (ca.

4000 s, Fig. 7(a)) is larger than the time of the energy

switching off ðt2 ¼ 2935 sÞ.
(b) Time constant of the points of the considered periph-

eral area (over 27 000 s, Fig. 3) is considerably larger

than the supply break t2.
For z 2 h0:3ul; 0:9uli [ hð1� 0:9uÞl; ð1� 0:3uÞli the

temperature profiles are aperiodic increasing and de-

clining (Fig. 7(b)). As it is seen, the ranges of the tem-

perature rise and decline do not overlap the intervals of

the system switching on and off (for t16 t6 t1þ
2t2 þ 2t3Þ. A slow heat diffusion in that region is re-

sponsible for a delay of the heater reaction.

In the region of the resistive cable (for z 2 hul;
ð1� uÞli) the temperature profiles are oscillatory for
tP t1 (Figs. 6 and 7(c)). The temperature difference at
the same points of the area discussed but at the moments

differed of t2 þ t3 was investigated. It occurred that the
largest deviation of a cyclic value appears on the cable

surface and does not exceed 0.07�C. This insignificant
aberration allows us to consider the temperature profiles

as quasi-cyclic within the given range of variables ðz; tÞ.
The difference between the maximum and minimum of

the repeatable cycle can be a measure of the thermal

oscillations. The largest oscillations proceed in the plane

Fig. 6. Time-profiles of temperature for x ¼ 0:09 m, z ¼ 0:5 m.
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of the cable ðy ¼ y1 ¼ 0:015 mÞ, but they are consider-
ably smaller on the surface of the heater (y ¼ 2b ¼ 0:06
m, Figs. 6 and 7(c)). The dumping effect of the floor

plate follows not only from the difference of the heat

diffusion velocity on the specified planes of the panel.

The heat accumulation in the concrete layer of the

thickness 2b� y1 ¼ 0:045 m also introduces its influence.
In formulas (28) and (30) the step characteristics of

the system determined analytically or numerically (Sec-

tions 2.1 and 2.3) are present. The largest difference

between the analytical and numerical solution is located

in the nearest surroundings of the cable (Fig. 7(c),

y ¼ yl ¼ 0:015 m). It follows from different models of

the cable core assumed in the respective models (Section

2.4, point (c)]. When the cable is not energised and the

region becomes source-free (i.e. for t 2 ht1; t1 þ t2i
[ht1 þ t2 þ t3; t1 þ 2t2 þ t3i) the discussed difference

vanishes.

The consecutive step profiles appropriately shifted in

time can be added to (28), (30). This way the time-spatial

temperature distributions for t > t1 þ 2t2 þ 2t3 are de-
termined. With the time increase the following changes

proceed:

(a) monotonically increasing profiles transform into ape-

riodic decreases and increase of the temperature,

(b) aperiodic profiles become oscillatory.

After obtaining the steady state ðt ! 1Þ, the tempera-
ture is cyclically varied in time in the whole volume of

the heater.

4. Conclusion

The analysis of a regime of an electric direct heating

floor has been presented in the paper. It was proved that

the thermal field in the device strongly changes in time

and space. For this reason determination of:

(a) time constant (Fig. 3),

(b) heating on curve (Figs. 4 and 5),

(c) starting and working cycle of the system (Figs. 6

and 7)

has important practical meaning. The specified param-

eters and characteristics were computed by different

methods and discussed in detail in Sections 2.4 and 3.5.

This way a three-dimensional image of dynamics of the

modelled heater has been obtained.

Fig. 7. Time-profiles of temperature for x ¼ 0:06 m: (a) z ¼ 0:05 m; (b) z ¼ 0:15 m; (c) z ¼ 1:25 m.

J. Gołe�biowski, S. Kwie�cckowski / International Journal of Heat and Mass Transfer 45 (2002) 2611–2622 2621



Acknowledgements

The paper was prepared in Technical University of

Białystok within a framework of the project W/WE/2/99

financed by the State Committee for Scientific Research,

Poland.

References

[1] J. Gołe�biowski, W. Peterson, Stationary thermal field in a
long duct of an electrical heating system, Electr. Eng. –

Archiv f€uur Elektrotechnik 79 (1) (1996) 17–22.

[2] J. Gołe�biowski, S. Kwie�cckowski, Analytical and numerical
modelling of a stationary temperature field in a three

dimensional electric heating system, Electr. Eng. – Archiv

f€uur Elektrotechnik 81 (2) (1998) 69–76.

[3] S. Kwie�cckowski, J. Gołe�biowski, Transient thermal field in
a long duct of an electrical floor heating. Part I. Step

response of the system. Part II. Operation with a regulator,

Arch. Electr. Eng. XLVIII (4) (1999) 429–452.

[4] Y. Takahashi, M.J. Rabins, D.M. Auslander, Control and

Dynamic Systems, Addison-Wesley, Reading, MA, 1972.

[5] W. Lipi�nnski, E. Kornatowski, €UUber die Eindringzeit des

elektromagnetisches Feldes in einer zylindersymmetrischen

Abschirmung, Arch. Electr. Eng. XLIII (3) (1994) 663–667.

[6] J. Gołe�biowski, W. Lipi�nnski, Modelling of electromagnetic
shield dynamics, IEEE Trans. Magn. 16 (6) (1980)

1419–1422.

[7] D. Hofmann, Dynamische Temperaturmessung, Verlag

Technik, Berlin, 1976.

[8] G. Lehner, Elektromagnetische Feldtheorie, Springer,

Berlin, 1996.

[9] J.P. Holman, Heat Transfer, McGraw-Hill, New York,

1986.

[10] K.J. Bathe, Finite-Elemente Methoden, Springer, Berlin,

1990.

[11] O.C. Zienkiewicz, The Finite Element Method, McGraw-

Hill, London, 1989.

[12] User’s Manual for NISA II, Numerically Integrated

Elements for Systems Analysis, Engineering Mechanics

Research Corporation (EMRC), Troy-Michigan, 1991.

[13] G. Feirweather, Finite Element Galerkin Methods for

Differential Equations, Marcel Dekker, New York,

1978.

[14] J.V. Beck, K.D. Cole, A. Haji-Sheikh, B. Litkouhi, Heat

Conduction Using Green’s Functions, Hemisphere, Lon-

don, 1992.

[15] W. Baade, Elektrische Raumheiztechnik. Installieren,

Warten, Pr€uufen, Verlag Technik, Berlin, 1995.

[16] M. Palic, Elektrische W€aarme-und Heiztechnick, Expert

Verlag, Ehningen bei B€ooblingen, 1992.
[17] K.T. Januszkiewicz, Numerical model of the periodical

operation of the electric storage floor heating, Arch. Electr.

Eng. XLIV (3) (1995) 427–437.

[18] S.C. Tendon, A.F. Armor, M.K.K. Chari, Nonlinear

transient finite element field computation for electrical

machines and devices, IEEE Trans. PAS-102 (5) (1983)

1089–1096.

2622 J. Gołe�biowski, S. Kwie�cckowski / International Journal of Heat and Mass Transfer 45 (2002) 2611–2622


